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THEQORY OF SELF-EXCITED MECHANICAL OSCILLATIONS
OF HINGED ROTOR BLADES

By Bebert P. Coleman
© SUMMARY

Vibrations of Fotary-wing sircraft may derive their
energy from the rotatien of the rotor rather than fron
the air forces. A theoretical analysis of these vibra-
tions is described and methods for its application are

explained herein.

The pressnt paper also supersedes and extends the
scope of the Advance Rastricted Raport entitled "Theory
of Self-Excited Mechinical Oscillations of Hinged Rotor
Blades," parts of which are in error. The theory has
been extended to include the effects of unequal stiffness
of tiie pylon for deflections in different directions and
the effect of damping in the hingeese and in the pylon.
Both the derivation of the characteristic squation and
the methods of application of the theory are given. 'In
particular, the theory predicts the so-called "odd-
frequency" self-excited speed range as well as the shaft-
critical speed. Charts are presented from which the
shaft-critical and the self-excited instabilities can be
predicted for a great variety of cases. The influence of
each physical parameter upon the instabilities has been
obtained. The comprehensive treatment applies to a rotor
that has any number of blades greater than two. Onrnly a
brief discussion and the formula for shaft-critical spced
are given for the one~ or two-blade rotor.

The use of complex variables in conjunction with

Lagrange's equations has been found very convenient for
the treatment of vibrations of rotating systenms.

INTRODUCTIOXN

A rotary-wing aircraft that has hinged blades will,
under certain conditions, be subject to vidbrations which




derive their energy'from the Totation of the rotor in-
stead of from the air forces. The term "ground reso-
nafice" usually refers to vibrations of this type. AlL-
though such vibrations have apparently caused accidents
in some rotary-wing aircrafi and have impaired the flying
qualities of others, very little attention has been given
this problem in the literature. & theoretical analysis
has therefore been undertaken, and the purpose of the
present paper is to present the theory and to describe
the application of the theory to rotary-wing aircraft.

General vibration theory and its application to al-
lied problems as well as to the particular problem of
rotor vibration are dicscussed in references 1 to 4. A
good general background for the present prodlem is provid-
ed in the chapters on rotating machinery and on self-
excited vibrations in reference 1. References 2 and 3
treat in nmore abstract fashicn the topics of rotation and
damping. A discussion of the variety of modes of vibra-
tion that exist irn rotors and a number of frequency formu-
las obtaincd by considering separately each degree of
freedom are given in reference 4. This discussion does
not, however, lend to a prediction of self-excited modes
of vibration,

Experience has shown that two types of mechanical
vibration may occur in rotors, The vidbration frequency
of the pylon is equal to the rotational speed in one type,
unequal in the other. The first type is sometimes called
the even-~-Ifrequency vibration or the one-to-one frequency,
and the second type, the odd frequency. The onc-to-ons
frequency vibration resembles the phenomenon occurring at
a critical speed of the shaft of rotating machinery and
will consequently be referred to in this paner as a
"shaft-critical vivration.,® The odd-frequency vibration
is properly called a self-excited vidbration.

® cderivation of the equations of motion for vibrations
of a rotor for the case in which the pylon stiffness is
equal in all directions of deflection is contained in ref-
erence 5. The equation for the shaft-critical speesd is
obtained and checked by tests of simple models. Reference
5, however,; contains incorrect statements regarding the
existence of self-excited vibrations. The error was due
to a confusion in the use of conjugate complex guantities
which has ncw been cleared up. The present paper thers-
fore supersedes refercnce 5 and, in order to make the
Present pap:r indewmendent of reference 5, the complete




derivations are included herein without reference to the
earlier report.

An alternative derivation of the characteristic equa-
tion for the whirling speeds of a three-blade rotor has
been given by Wagner of the Kellestt Autogiro Corporation.
By considering only the case of a pylon having equal stiff-
ness in all directions of deflection, Wagner has shortened
the analysis Dby considering directly the equilibdrium of
forces and moments under conditions of steady circular
whirling. ©Some exanmples of the dependence of whirling
spzed upon rotational speed are given, and the formula
for the shaft-critical speed is obtained.

In the vpresent report, the theory is extended to in-
clude the effects of damning in the hinges and in the kubd
and the effects of different stiffnesses of pylon deflec-
tion in different directions. The method of analysis,
particularly the use of corplex variables in the equations
of motion, is explained in some detail and all the previous
results are shown to be a special case of the more general
problem here treated.

SYHBOLS
a radial position of vertical hinge
Ay j
- !
Ay
bhy, = Azll
Ay = Klz \ elements of the characteristic deter-
{ s (
B ‘ minant (gee equation (31))
hay = Ay, }
Aza ;
22 }
b distance from vertical hinge to center of mass of
blade
B damping force per uhit velocity of pylon displacement

T, + 3B
_ X Y
(Bf“ 2 )



T

Ly f

AM

coefficient defined in equation (35)
coefficient defined in equation (34)
.o C4 arbditrary constants
cocefficient dsfined in equation (35)
coefficient defined in equation (34)
time-derivative operator (d/dt)
dissipation function

moment of inertia of blade about hinge

[b @+ ;.>]

. I coefficients defined in equation (37)

5

indices and subscripts used with hinge coordinates
(equation (14))

Kx + Ky
spring constant (Kf = —~-§__~>

total effective mass of blades and pylon (m + nmy)
mass added at hub for vidbration test

total number of blades
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T radius of gyration of blade about its center of mass

Ry, ... Ry cocefficients defined in equation (37)

s stiffness ratio (Xy/Xy)

t tine

T kinetic énergy

Ty kinetic energy of rotation of blade about its center
of rmass

Ty kinetic energy of translational motion of kth bvlade

TS kinetic energy of pylon

v potential energy

X,y displacements

Xq1¥g Values of x and y when t = O
z complex displacement (x + iy)

z complex conjugate of 2z (x - iy)
o angle between blades %g)

Bor Bys +.. Py angular displacements of Dblades

Bko value of P, when t =0

8os Lis -+o { variables representing hinge deflections

when equations are expressed in fixed
coordinate system

Gor B1s ose O variables representing hinge deflections
when equations are expressed in rotating
coordinate system

- 3
A == EZ ( X in applications\
Mx \qu’r /
B B.
Ay = L J . in applications>
By \Mjwg




g /Bp . X ,
Aﬁ = = (Toz in applicatlons> |
B.
Ap = o
.2 u
B
Ay = gé
M
Al = 2 )
b(l I
b*/
Ay = (——Eg- in applications)
I Tw,
A, = e
3 =
2 (1 + 5
\ b~/
nmy
" mass ratio (*-—~——>
m+nm-b

v, v, expressions defined in equation (3)

£
?

wy angular whirling velocity measured in rotating co-

ordinate system (used in nondimensional form in
. z z
applications!

We angular whivling velocity mneasured in fixed coordi-
nate systee ‘uged in neadimensional form in ap-
plicaticns)

w., reference frequency (v/ix/Mx)

Subscripts:
£ fixed coordinate systen

a rotating coordinate system
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B hinge deflection
X,y component directions in fixed coordinate system
b blade

APPROACH TC THE VIBRATION PROBLEM

Stavility and Instability’

If a vibrator were attached to a rotorcraft, several
modes of vibration could be excited at any rotor speed.
Only the modes that are likely to be excited during oper-
ation of the aircraft, however, are important.

In the present discussion, it is convenient to classiw
fy the modes of vibration according to the circunsiances
required for their excitation. The different types of vi-
bration are identified analytically by the nature of the
roots of the characteristic equation. A hinged rotor may
encounter three types of vibration which, for convenience,
are herein designated ordinary, self excited, and shafy
critical. At zero or slow rotational speeds, an external
force is required to excite vidbration. The friction al-
ways present in such systems causes the vibration to be
damped out when the force is removed. Modes of vibration
requiring an external apprlied force to maintain them will
be called ordinary vidbrations. The mathematically ideal-
ized case of gero damping will also be considered an ordi-
nary vibration when it is understood to be an approxima-
tion to a system actually damped. Self-excited modes of
vibraticn are those with negative damping and are recog-
nized analytically by the fact that a root of the charac-
teristic equation is a complex number which has a negative
imaginary part. &4 slight disturdance will tend to in-
crease with time instead of damping out.

When a rotating system is not perfectly balanced, the
centrifugal forece of the unbalanced mass nay excite vidbra-
tions that have peak amplitudes at certain rotational
speeds. Vibration excited by unbalance and in resonance
with the rotation will be called shaft-critical vibration.
This type occurs at the rotational speed at which the
spring stiffness of the pylon is neutralized by the cen-
trifugal force. In the analysis, the shaft-critical vi-
bration is recognized in rotating coordinates as a zero
frequency and in fixed coordinates as a frequency equal %o



the rotational speecd. The critical speeds of a rotating
shaft are a common example of this class.

The purpose of a theory of rotor vibration is mainly
to predict the occurrence of and, if possidble, to show how
to avoid self-excited and shaft-critical vibrations.

Choice of Degrees of Freedon

Of the large number of degrees of freedom of a hinged
rotor, the important ones for the present problem have
been found to be hinge deflectlon of the blades in the
plane of rotation and horizontal deflections of the pylon.
Other degrees of freedom, such as the flapping hinge mo-
tion of the blades, the Yending or torsion of the blades,
and the torsion of the drive shaft, are considered unin-
rortant in the problem of self-excited oscillations. Some
wmetions, such as landing-gear deflection, that produce
lateral deflection at the top of the pylon may, however,
be important,

Physical Parameters

The theoretical results ziven later provide a means
of predicting the natural frequencies and, in particular,
the critical speeds and unstable speed ranges in terms of
certain physical parameters, such as mass, stiffness, and
length. The successful application of the theory depends
upon the determination of the proper values of these phys-
ical parameters for the aircraft or model being studied.

The important parsmeters to be deterumined are:

a radial position of vertical hinge.

b distance from vertical hiange to center of mass of
blade.

my, mass of blade. TFlexibility of the blade structure

may have to be taken into account by the use of

an effective valus of Ry, different from the ac-
tuwal blade mass. The effective blade mass can be
taken as the value required to make the theory
predict the correct pylon natural -frequency when
the rotor has a. zero or very slow rotational speed.

~ <
I noment of inertia of blade about hinge [mbb‘ (14-%§>]
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KB spring constent of self-centering springs, which can be
determined by a force test or fram the hinge frequency
with the hub rigidly supported.

Ty 10y effective mass of pylon for deflections in X- and y-directions.

Ex,Ky effective stiffness of pylon.

The effective mass of the pylon is the value of a con-
centrated mass thet would bkave the seme kinetic energy expressed
in terms of the deflectiong at the hub as the actual pylon and hub
if it wele placed &t the rotor hub in the plane of rotation.

The effcctive stiffnesa of the pylon is the stiffnees of a
spring that, 1f placed at the hub in the plane of rotation, would
have the soame potentiel energy in terms of deflections at the hub
&8s the actuel pylon. Equivelent definitions sre that, if a simple
spring end mass were imegined to be substituted at the hub in the
plane of rotation for the pylon and hub, the natural frequency and

the change of natural frequency with added mess would be the same as
for the zctuel pylon.

An experimental method of measvring the effective mass my
ond stiffness Kx of the pylon is to replace the rotor by an
approximately equel, rigid, concentrated mass AM at the hub
end to measure the natural frequency for two or more values of this
added mass. The quantitien are then related by the cguation

or

5 N SR
. Kx(mx-f-AM)

If measurcd values of J../<1>f'2 aro plotted againgt added mass AM
and e straight line is drawn through the points, the intercept and
the glope of the line will determine the cffective values of

Kx and. iy »

For the paramecters & and b, the actual geometric lengths should
be used. unless the flexibility of the hinge offset rm a is
comparable in magnitude with the hinge spring stiffneses. 1In this
case, it is recommended that an effective value of & be guessed

and that b be determined by subtraction from the correct geometric
value of a + b.
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The demping paremeters mey be defined by the form of a
dissipation function F. The function

. . D PR = TP
2F = Byxg~ + Byyr + .> Bphy
K=0

i3 equal to the rate of dissipation of energy by damping.
The parcmeters By and By thus measure the damping force per

unit velocity referred to linear displncements of the top of the
pylon and BB is the damping torque per unit angular velocity

at a blade hinge. If the demping force per unit velocity is not a
constant, effective values should be used that will represent the
same dissipation of energy per cycle as actually occurs with a
reasonable amplitude of vibration. The amplitude of free
vibration in a single degree of freedom is given in terms of

By, By, and BB by

Bl

D

Xp = X5 ©

Jep=Js ©

e B

o
]

Pe = B_o

The demping parameters are probably the most difficult ones
to measure accurately. ‘In practice, it is advisable to meke
calculations for a given case, first on the basis of no demping
and then with the use of the estimated values of the damping
parameters.

MATHEMATICAL DEVELOPMENTS
Method of Analysis
The derivation of the characteristic equation that ig used

as the basig for predicting the unstable oscillations of & rotor
is presented in this section of the report.
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Readers interested solely in applications can omit this
sectiovn and proceed immediately to the section entitled
¥fdethod of Applying Theory."

The method of analysis treats the equations of motion
for small displacements from the equilibrium condition
with steady rotetion. A proper choice of coordinates
leads to equations with constant coefficients. The solu-
tions are exnonential or trigonometric functions.

The mathematiczl manipulations involved in treating
the wmotions of a mass iIn e plane of rotation are facili-
tated by ithe use of a complex variable. The typical dis-
turbed motion obtaimsd by sclving the equations of mo-
tion is an elliptic whirling motion, which is rerresented
in terms of a complex variadle 3z = x + 1y. A%t any in-
stant, 2 represents the displacement of the pylon from
i1ts equilibrium position. 4An expression such as

g = celwft

represents whirling of the'pylon in a circle of radius ¢
with angular velocity we. The sign of wg determines

the sense of the rotation. Two rotations in opposite
sense with the same radius are equivalent to a vibratory
metion in a straight line.

iwft —iwft
c(e + e )

2c cos wft

n
i

Two opposite rotations of different radii are equivalent to
whirling in an ellipse. 4 complex value of Wg represents
whirling in a spiral, which may be either a damped or a
self-excited motion depending upon the sign of the imagi-
nary part. & self-excited motion exists when the imaginary
part of Wy is negative, and the magnitude of <z increases
with time.

The displacements may be referred to a fixed or to a
rotating coordinate system. If zp and z, are the dis-

Placements with respect to a fixed and to a rotating ref-
erence system, respectively ,

g = zaeiwt

If
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iw, b
z, = ce’ &

then | 1(wy+w)t
Zf = Cce

A whirling speed w,

nates thus corresponds to a whirling speed wWg = Wy + W

with respect to the fixed coordinates. A shaft-critical
vibration corresponds to w, = 0 in the rotating coordi-

nate system or %o We = W in the fixed coordinate system,

with respect to the rotating coordi-

Fxample of Fotor with Locked Hinges

An example that involves a partial use of complex
variables is given on page 253 of reference 2. The prob-
lem given there of a mass particle moving on the inner
surface of a rotating spherical bowl is mathematically
equivalent to the disturbed motion of a flywheel and shaft
or of a rotor with locked hinges. The egquations of motion
obtained in real form in rotating coordinates '

I X
2 : 8¢ - . -a’a _ =
Xy - 2wy, - Wx, = - T Xg
' (1)
B,v K
. av a
¥, + 2wx, - w2 = - —
Ja a Ya M M Ya
are coubined in the single equaticn
B X .
s ) ay . _— - = o
iy + (21w + l&> Z, + " w3> zg = 0 (2)
where
Zg = Xg + iy,

is the complex position vector in the rotating coordinate
system. The complete solution, if small damping is as-
sumed, is

iwt -V, t+iwLt -vyb-1w,t
z,€ = C e ° " 4+ Cgze ° r

(3)

where
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)

IJ"
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<
[l
il
TN
g';\)w

w
(-a)
B
2 <1 + lﬂ)

M wr

The path of the motion is represented by rotations of a
complex vector in a plane,.

&

<
1
|

The use 0f a complex variable has thus cut in half
the number of equations to be handled and has yielded a
solution from which the geometric path of the motion may
easily be reconstriustead, The advantage oif the z-nojation
is not ful!v reclized, however, -nl,us it is used fronm
the very beginning of the Trodlc The clioge similarity
of th_s proflem Yo the rot ormvx‘r"tien proviem makes it
worth while to shew the full appiication or the gz<notation
to the preceding exampie. The coompl
any instant determinas the position o

3

Ty &t
he nass particle

XN

relat

ve to the rotating cocrdinate system. If the posi-
tion in a fixed coordinate system is denoted by zg,
it
zZg = Zaelnt (a)
and =z, can be treated as a generaliged coordinate in the

Lagrangian equations~of motion., The kinetic and potential
energy expressivus can be immediately written as

1 ...
T =-§ L.zf';gf
=1 u(s 4 iws) (. - iwz)
2 a a a a
1 . —_

A digsipation function for damping that dedends upon motion
relative to the rotating system can be written

1 .
5 Ba%s2g

1) e

F =

The equations of motion are now obtained by considering
z, and =z, as generalized coordinates in the Lagrangian
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equations. Substitution in the equatloen

+ oF + oV - o

3%, J%s Ofa

4 (3t >_ 3T
4t \3z,

thus yields the equation previously given
B . X
» 8 2 =
Zy + <21m + ﬁ*> Zg + (ﬁ -w > Zg 0

"he same method can be used to obtain the equations
of motion in the fixsd coordinate svstem. In thigs case,

1, = R
L ez k
V:—'; L;Zfz—s 7 (5>
. . . - co— N
T = 5 8, <zf - }mzf) <zf + 1wzf)
The equation of motion in terms of zy Decomes
s 4+ 3a (, K
éf + "ﬁ.‘ <af - inf> + Ef- Zf = 0 (6)
and the solution for small values of damping is
B w :
- 2 (1 - _»,—~---—>t + 1 JK/M ¢
z. = C-6 2K Vi K/M .
£ = V1
B w
--2-;%; <1+ _____)t-i K/M t :
+ Cge ) v K/ (7)

This sclution shows that the motiocn consists of two circu-
lar vibrations in onposite directions and, moreover, that
for w > ./ /M soe Tl e Lecsents wmnt tle mosion;

R VLR oL TR e tULTy ('l’“)LIl .

b

Golo o As >

.

This example illustrates a shaft-critical speecd for
= [/ K7ﬁ and a self-excited instadbility for w > de/M.
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A discussion of the physical picture of this instabdility
due to damping is given on page 293 of reference 1.

The effect of damping in a nonrotating part of the
system can be included in the analysis merely by adding to
the previous dissipation function the term

1 =
S Br 2g %

The egquation of motion then becomes
Mz + B + B, - iwz ) + Xz, = 0 (8)
of f f) £

The solution for small values of damping becomes

B B
£ _Ca R s /X
- S o (1 K_ﬁ> + i F/M] 5
Zfzcle' ‘/"/

M-f’c (9)

_B_f. — Eé:(l + w ) -
2M 2M /
+ 020_ K/M

The motion is now unstable above the specd

_ Bs\ |
w~/;<1+3a/ (10)

Hinged Rotor

Inclusion of the effect of hingc motion in the plane
of rotation increases the number of degrees of freedom
and the number of equations of motion., For example, three
hinged Dblades and two directions of pylon deflection give
five degrees of freedom to be considered. If special 1lin-
ear combinations of the hinge deflections Py are used as
generaliged coordinates, no more than four degrees of free-
dom need be considered simultaneously. The use of complex
variables reduces these four equationsg to tweo equations.

Appropriate variables in the rotating system for a
three~blade rotor are
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€o = %% <ﬁo + By + B w
. 3 3 {

8, = 3By + Bie  + Bae /o (11)
\ |
4ni gmi |}
. 3 3 |
62 = -b—g— BC + Ble + Bae z

These variables and their complex conjugates satisfy the
relations

and also

_— . 2
608g + 6,6, + 8,6, = - 8, + 20,6, = 2 <Boz +B.° 4 832>

The variables Bk' by virtue of their meaning, are re-
ferred to a rotating. coordinate system. The special linear
combinatiorns of the P} denoted by 6 are also referred
to a rotating coordiaate system. The appropriatc variabdbles
to represent the hinge deflections when fixed coordinates
are used are defined by

wt

(x = ekei (12)

Geometrically, 6, or §1 is the complex vector rep-

resenting the displacement due to hinge deflection of the
center of mass of all the blades, Jjust as 2z represents
the position of the shaft due to pylon deflection. It will
be shown later that, in the equations of motion, 61 is
coupled with z and 6, 1is an independent principal co-

ordinate. Equations (11) when solved for B,, B, and 3B,
tecons

6o + 6, + B, = biB,

~-ia i g
6, + 6,e + 6,e” 7 = biB,
o + 6101% 46 0-10 = bip,
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Then, in a mode involving 6.

8, = 0

8, = J% eiwat
&

ea = - el

Bo = sin w,t

B, = sin (w,t - a) (13)

5 = sin (wat + a)
Ecuations (13) show that, in the 6,-mode, the blades
are undergoing sinusoidal vibrations 120° out of phase with

one another in a manner analogous to three~-phase electrical
currents,

General formulas for any nunmber of blades are

n=1 W
- bi . 1jok
5= Z P 1
' k=0 |
o =21 |
: |
- |
o, 6 j ? (14)
bn = B
n-1 5 n-1
, _ b 5
2 Ox8x = Z Py
k=0 ) k=0 1

’
-

Derivation of Equations of Motion

The equations of motion and the characteristic equa-
ticn of whirling specds are herein derived for the genseral
case of three or more equal blades on a pylon that may
have different stiffness properties in different direc-
tions of deflection. The effects of damping in the blade
hinges and in the pylon are included. The equations are
first formulated in a nonrotating reference system. The
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required modifications are then given for the case of isotropic
support stiffness. The corresponding equations referred to the
rotating coordinates are then obtained.

Let the position of the center of mass of the kth
blade be represented by the complex quantity =z, 1in the
plane of rotation., (8ee fig. 1.) Let the bending deflec-
tion of ‘he pylon be represented by =z, Iin a nonrotating
coordinate system and let Bk be the ﬂinge deflection of

the kth Dblade. Then

1@ i(ak+wt)
2, = Zp * (a + be Fk) e @ (15)

F S

The complex velocity is

"Oiékeiak + iw (a + beiﬁ};)] ei(a,k-}.wt)

zZ, = éf + (16)

|

Because only small displacements are being considered, the
exponential factors containing Bk can be expanded and

cenly the terms that lead to quadratic terms for the kinetic-
energy expression need be considered.

Some terms can be ignored either because they cancel
after summation for all the blades or because the ccrre-
sponding derivative expressions in the Lagrangian equations
vanish. The substitution

i B
Bk:l-ﬁin_-S

=]

leads to an expression for the kinetic energy of transla-
tional motion of the kth Dblade.

1 o '
Ty = 3 ny zk % (17)

. . S L. . i(a,k-l-(.U:G)
22y = Zglg + szl (Bk + 1w5k) ]

-i(ak+wt)

+ 2,(=p1) (B ~1wp,)e +0°8,° - wlavpy”
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The kinetic energy of rotation about the center of mass of
the blade is

r =T omy r7 By (18)

The effective mass of the pylon may be different in the
e~ and in the yf—diréctions. Allowance for this possi-

bility 'is made by writing the kinetic energy of the pylon
as

1 /7 « a2 > 2
Ts =~§ \BxXf * W,¥r >
. . (19)
2 - 2
o +Am<2f +Zf>
T2 | M s B
vhereo
B, + o
n = X .
n, - m
Am = = J

2

The total kinetic emergy is the sum of the expressions for
the serarate kinetic energies.

The pylon spring constant may differ in the Xe~ and in
the yf-dircctiyns and, consequently, the potential energy
can bc cxpressed as

1| e *Ey; T4 3.7
V = —2- Kzf_if + AX ——*——5———- + Z KaBk (20)
_ ¥=0
The effact of damping will be expresscd with the aid
of a dissipation function. If damping exists in the pylon,

in the rotating shaft, and in the hirges, this function be-~
comes

» el = n~21
1 M Z + Zf » _: ;’ . 2
F = -2- Bzfzf + AB -—--——é——-——-— + Bazaza + /. BBBk (21)
k=0

The eum of the various energy expressions for all the
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bladcs, oxpresscd in terms of the variables 3z and §k
in the nonrotating coordinates, becones

.2 L2
1 Zg Tig = < - =N )
T=3 |An 5 + (m+any) zgze + nmy (zfﬁl + zf§1>
L
+1+£ b, - 1w ?+1wﬁ —wEEVQE
B >k ok sk k b/ k “k
2 - 2
1 2. + Zp . _ K - )
V = — {AK 4+ K zezg + —E.§ﬂ§k k] i (22) -
2 2 : b‘ raw | (
10 é;f‘a + 7p® - s - -
F = '5 LL‘B + B Zfo + Ba <Zf"i&)Zf)<Zf+iL‘JZf>
n-1 .
B Y—l . — .
Bp ( - :
+ —£ ‘ £, - iwt ¢+ iwt ;
T 7, k k k k | By
k=0
The Lagrangian equations of motion are
a /3T > _oT + aF + oV _ 6\
at NI 3%¢ Jzg  OZ¢ \
- ( (23)
_g_(gg_ _ oT + 9F + oV _ o
\37F N = - =
dt e, at, 9L, oL,

-~

and similar expressions for the other variables. The equa-
tions of motion in fixed coordinates then becone

(minmy) %o + Bio + Bp(zp-iwzg) + Kog + fnize + ABTp + AKZe + nmy (1= 0

. . \\\} ‘g, - "g BE i i \\ - a ? t . O
i, Eat2nme, | (La = J( E—2iwl —w” +~—4—-< —iwl pwt— (e ( ]=
bef h) L \ L8 = 1 1 m-bba 1 1/ B = NG 'l_j
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where (,, refers to the {-variables other than {,. The
complex conjugates of these equations are also obtained
but give no additional information. ZEach complex equation
is, of course, equivalent Vo two real equations. It is
noticed that the first two equations contain only the var-
lables z,, %., and {, ané that the third equation

represents n-2 equations, each containing one independ-
ent principal coordinate {,. The physical meaning of
this partial separation of variables is that a blade mo-~
tion represented by §1 involves a motion of the common
center of mass of the blades and, thus, a coupling effect
with the pylon., Blade motionsg in which the common center
of mass does not move are represented by {z, ... {n. For

three blades, the only suech mode is the one corresponding
to go‘ In this wmode, a&ll the blades move in phase; the

moticn is always damped and does not lead to instadility.

The equations of motion of a one- or two-blade rotor
are somevhat differsnt from equations (24). The differ-
ence 1s connected with the circumstance that a rotor of
three or more egual blades has no preferred direction in
its plane; wvhereas, a one- or two-blade rotor hesg differ-
ent dynamic properties in directions along and normal %o
the blades. Only a brief statement.and the final equation
for shaft-critical speed will be given for the one- or
two~-blade rotor.

The equations of motion involving zy and {, can
be written more compactly by use of the notation

2
D:—(-i—- D2=d
at at®
and the substitutions
B B
Tf = Mg 2 /.8 2N M
mbb Kl+;§>
B

a .
¥ T Pa o2 Ay
b (1 + -*;)
P
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LB KB
_—-M—_— = A}\f = = A’o
n,.b? <1 + E'__> )
b b2
nri
— b = K
m+nay,

o) M

1 : i \
D% up + | (D-1w)® + Ag(D-iw) + WA+ Aa] £, =0

i

v/ : B

Then
2] ¥ T N -
|>D? <+ )\fD +}\a(D—-iw) + T]Zf +- é_ﬂ Dz"l‘A)\fD"‘ -%5) Zf+ p’DZgl: 0 )
[ L
(25!

Ay, Tze + Dhy 20 + A, o ,
(26)
Aal(mzf + Azz(Dzz =0

f
o
e —

The Characteristic equation

The general form of solution of -equations (26) is an
elliptic whirling motion that can be represented by

2p = Clelwft + cze-iwft h

T = TetWet 4 T olwrd ( (27)
iwst 1Wst

Cl = G:,,e + 048 1 P

Special cases of this motion include whirling in a circle -
C;, = C4 = 0, and linear vibration. Cy = C5, Cy = Cy.
Substitution of equations (27) in equation (26) gives

[All(iwf) C,* A4, (iwe) Ee'kAlz(iwf> Gs} o twr?

!
(@]

r _ o _ ,__ |
b [£22(-5Bp) O 0 (DT, + s, (1T, Jomi®et = o 1.
- (28)
[Alz(iwf) Cy + hzp(iwg) Cs} oite?

— it
+ [Alz(-iwf) Cp + hgp(-illg) 04] R
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In order for equations (27) to be a solution of equations

(26), equations (28) must be satisfied for each value of
.. iU)ft -—iﬁift

t. The coefficient of each time factor e or e

must therefore separately vanish, Because each bracketed

expression represents a complex quantity that vanishes,

its complex conjugate also must vanish. The condition

for o solution can therefore be expressed by the vanishing

of the first bracketed terms and the complex conjugates

of the second bracketed terms, Hence,

| 3
A (GGwe)Cy  +M, (1we) 0+, 5 (Hwe )Gy = 0
A12(1uwplCy | %Azz(iwf)cs =0
. > (29)
AA-ll(iUJf)Cl +A11(iwf)cz +1}12'\,iq)f)c4 = 0
Zlg(iwf)_c—e +_A-82(i-‘.Uf)C4 = 0
A

where lll(iwf) is the complex conjugate of A,,(-ilg)

and is obtained from 4,,(iwg) by changing iw to -iw
without changing iwge. The characteristic equation giving
the rotational gpeeds is the determinant of the coefficients
of €., Cg, C,, and C, equated to zero. With the second

and third columns interchanged for symmetry, the determi-
nant becomes

'A".'\.l A'].E AAll Q
A Ay 0 0

e 2 = 0 (30)
AAll O All le

0} 0 Alz Aez

(Ayyhy,—hy b ) (A A - K A ) -0 AR A, K (1)

i
o

where
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Ay = —we? 4+ iwedp + AN (we-w) + m
i . ¢ X
A11 = ~wp® + lwehe + ika\waw) + ﬁ
- _ AK
AAll = AAll = - %? Wfs + iwaKf + T%
Ayphpy, = A4, = — o We = A, we
2 (l + .:)
2 ‘ .
A22 = e (Wf~W) + i%B(Wf~w) + wgﬁl + Aa
— < a2
Aoy = - (Werw) 4+ Ing(werw) + Ay + A

The roots uy of this equation are ths characteristic

whirling speeds of the rotor.

For the case of lzotropic supports,
LAy, =0
smé the equations of moticn are satisfied by equationé (27)
with Cg = 0y = 0,
The charvacteristic egquation ig then simply

éllAaa - A13A21 = 0 (32)

In a rotating coordinate system, the complex coordinates

are % and 8,, where
a 1

Zf=ze

i
@
o
H.
£
o+

Then

'Dil

{
Fan
J
(e>]
P
ER
e
E
L4
[
~
@
o
£
p-s
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If the whirling speed in rotating coordinates is represent-
ed by Wy

z, = O,e

iw, ¢
8, = Cge™ 72

The characteristic equation is then obtained by substitut—A:
ing wy, + w for ws.

Ars(wa+w) Agp(w +w) = A (W +w) Ay (w +u) = 0 (33)

The characteristic equation can thus be stated in terms of
a whirling speed in either the fixed or the rotating co-
ordinate gystem,

METHOD OF APPLYING THEORY

Application Neglecting Damping

In plotting curves for use in applications of the the-
ory, it is convenient to consider one of the pylon bending

frequencies wy = . Ki/My as a reference frequency and

to refer all other frequencies as well as the rotational
speed W to the reference frequency as unit. The number
of independent parameters is thus reduced by 1. All
quantities in equations (31) to (33) are then expressed
nondimensionally.

The natural whirling speeds and the three types of
vibration - ordinary, self-excited, and shaft-critical -
can now be predicted from a study of the roots of squation
(31) in which wg 1is considered a function of w for
fixed values of the other parameters.

The case of no damping will be considered first, Be-
cause equation (31) with damping terms omitted is of the
fourth degree in wf2 and of only the second degree in

2

wW", 1t may be solved convenlently by first choo§ing val-
ues of we and then solving the equation for w*. Simi-

lar indirect methods can be used with equations (32) and

(33). Special methods to be used when damping is included
will be discussed later.
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The meaning of equations (31) to (33) will be illus-
trated by examples. The real part of we will bPe ploited
against W for selected values of the parameters A;. Az,
Az, and s. The simplest case is that in which the rass

of the blades is so small that any force on %the pylon due
to blade motirns is negiigible. The pylor motions are
then independont of the blade motions. This case is ob-
tained by putiing Az = 0. The characteristic equaticn
(31), (32), or (33) then factors into expr6531ons yielding
sbralght linss snd hyperbolas.

An exsmple of a roftor with particular values of the
paramabex is plotted as long-dash lines in figure 2.
The horizontal straight lines correspond to »nylon bending
and the sianting hyperbolas corrrespond to hinge deflec~
tion. ZBach curve represcnts the trend of one of the rcal
roots we. As Az incroases slightly from zero, the
greatest changos in the curves cccur in the vicinity of the
intersections of the straight lines with the hyperbolas.
Here each branch breaks away fron the intersection and re-
joins the other branch. At a gap, such as O in figure
2, the nunber of real roots of the frequcncy ecuation is
reduced by 2. Tre missing roote arc comnlex conjugate
numbers; and one of fiem must have a negative imaginary
part, which impliecs a sel:i-exXcited vibration.

Con51 der the interpretation of figure 2 as & 1s
gradually increasecd from gero. At zcro rotational speed,
the wvalues of wg are the natural frequencies that could
be oxcited as. ordinary vibration by applied vidbrating
force., Positive and rogative values occur in pairs of
equal magnitude and corrcspond to linear vibration modes
reproscntcd in complex notation as

‘ iwet ~iwst
Zf=C<Glf-»+G 1>'

As W increases from gzero, the positive and negative
values of We 1o longer are equal in magnitude. The nor-
mal modes are therefore whirling motions with angular ve-
locities equal to the plotted values of wy.

. The shaft-critical speed is the rotational speed at
which We = W and hence . is glven by the point A where

a 45° 1ineithrouﬂh the origin intersects the u)f--curve°
This speed ~orreeponas to the peak for vlbratlons excited
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by untalance in the rotating system., As W 1increases
above the shaft-critical speed, the modes of whirling are
stable until, for the case of no damping, the value of wg
becomes complex at the value of w at which a vertical
line is tangent to the plotted curve. This point B 1is
the beginning of the self-excited range. At the point D,
the motisn again becomes stable. The real part of wy 16
plotted in the region C as a short-dash line, The com-
plex roo%s inm the region ¢ have been calculated and
plotted in figure 3.

The point E, at which We = 0, 1is of some interest.’

At this speed, a vibration of the blades could be excited
by a steady force (wg = 0, w, = -w) such as the force of

gravity if the plane of the rotor is not horizontal.

Because the most important information to be obtained
from the frequency ecuation is the critical wvalue of w
for the shaft-critical and self-excited vibrations, a set
of charts that gives this information for a large variety
of values of the physicasl parameters has been prepared.
These charts are given in figures 4 to 6, which correspond
to values of stiffness ratio Ky/Kyx = s of 1, >, and 0O,
respectively. The use of the charts is illustrated by a
numerical example. OSuppcse the values oi the parameters
for a certain rotor are A, = 0,07, Ay = 0,22, Az = 0.1,

s = 1, and w, = 155 cycles per minute. A straight line,
such as AB in figure 4, is first drawn to represent the
function waAl + A;. This line iatersects contours

Ay = 0,1 at w® = 0,77 for the shaft-critical point and

2

w® = 1.6 and 4,85 for the beginning and for the end of
the self-excited range, respcctively. With a reference
frequency of 155 eycles per minute, these values corre-
spond %o actual rotational specds of 1356, 196, and 342 rpm.

411 possible values of 4A,, A,, and Ay are thus cov-

ered by suitadly changing the straight line AB. The gen-
eral effect of the stiffness ratio s 1is not large; any
case can therefore be estimated with a fair degree of ac-
curacy by use of figures 4 to 5.
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Possibility of Avoiding Occurrence of Vibration

Figures 4 to 6 can also be used for the inverse prcb-
len of finding the values of the parameters that are re-
guired to obtain given values of critical rotational speced.
These figures show that to eliminate entirely the sclf-
excitvted instabdility requires that A; be equal to or ‘
greater than 1. The shafi-critical instability can be en-~
tirely eliminated only with a value c¢f Ay in & small
range near 4 and with s = o or s = 0, These values of
Ay differ radically from present designs in which a typ-

ical value is 0,07.

The satisfactory requirement of keeping the instabil-
ities outside the ovnerating range of rotational spoced is
found by first picking a reasonable valuc of the pylon

frequency ./ K£7E to fix the scale unit for w and by

then obsarving the combinations of A; and A, that can
be used to avoid the critical A -contours.

Bffect of Damping

The effect of darmping has been included in equaticn
(31) through the parameters Axs Ay, and Ag. A method of

computation similar to that used in flutter theory appears
preferable to attempting to solve the eguation directly
for Wy o The beginning and the end of an unstable range

" can bo found by the following method: At a limit polnt
btetween a stable and an unstable speed range, the value cof
we is real, Bguation (31) is first separated into real
and imaginary parts with wf considered real. ZEach part

is considered a functional relation between wy and W
and is plotted for a given get of values of the parameters.
The intersections of the real and the imaginary equaticns
give the rotor speeds and frequencies corresponding to the
beginning and the end c¢f the unstable ranges. In the com-
putations, it is preferadle to choose values of wy and

to solve the equations for the corresponding values ¢f W,

The explicit form for computation in the sinmplest case of
isotropic supports, wii. damping in the pylon and in the
hinges but not in the rotating shaft (A, = 0), 1is ob-
tained from equation (32) rearranged as follows:
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Real equation

w? - 2Bpw + Cr = 0 ’ - (34)
W = BR = BRB - CR
where . L =
w AN o
BR = f 1 + £7'8 -
1 - A 2 £
1 | 2 ~We o+ M)
and
o _ U)fa ' 1 + Aa Aswfa + >\f>\B\\‘
Imagiﬁafy equation
we - BBIU) + CI = 0 (35)
where
1 r kg - K
pp = 2 fup - 2 (wugr + )
I 1l -~ A.1 i' £ ‘)7"11")1 + M ]

Aand

- A : ° K) ( ) >
Cr = = - + + {—Ww + A
I 1 - A [Af £ M/ ? 2

The most gensral case obtained from equation (31) is writ-
ten:

Real equation

Coefficient of w® | Na(1-4,)2
w# By (1-Ay ¥ + Ay Ry
(36)
w? RiRy - Inl3 + Ay By - By
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Imaginery equation

.
Coefficient of w?* Il(l ~A-‘1) + )\.az I,
2 A
»? R Ig+ Rl + Ag® I, = I (37)
1 R I, +RI, - I,
where

%L

( V-cuf +5l> W2 (xx Mx+x>xygﬁf+xa)

;,.-
!Z

ﬁ(‘.mfa + 1—\'5_) wp (xy T x&) + i%l (—wa . I—{MJ;) wp (xx %ié - xﬁ.)

d
]

L
2 ("”fa "'Az) We? Mp?

I, =2 (»wfa +A2>mfx;3
Ry -2 (1-4y) (o2 +4,) - lof + g
I = -2 (1 -Ay) ophp + loghg

oy}
f

o=l | (w2 o B (o o0 o (bete) 2
4 2wy 40 i (—wa + IL).,uf)\,B + Wp (hf + ?\.a) (“(Df + Ai}
g = 20p*h [ (1~ y (-w« +E) -xaxB]

5 = 2t [- (1 —Al) wp (xf + e ) “2hgoe

Exemples of calculated cases with demping are shown in
figures T to 9. The presence of small amounts of demping
in both the pylon and the hinge degrees of freedcm does
not greatly change the predictions that would be made
from the equations with no damping. The plot of the real
equation is practically the seme as the plot obtained when
demping is neglected. The intersections of the curves of

£d L
i L}

il
1
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the imaginary and the real gquations with any reasonabdle
value of kf/%a are near the points that would be con-

sidered the limits of the unstable range if damping were
neglected. Increasing the amount of damping decreases

the gap between the limits of stability until the unstable
range is finally eliminated, &n approximate solution for
the amount of damping required to eliminate the self-
excited instability is obtained by requiring that the
damping be at least large enough to make the curve of the
real equation pass through the point where wy =1 and

w is the value given by the equation

l =w- J/waA1+Aa

The valucs required in the case of s = ® have been com-
puted and plotted in figure 10. The elimination of self-
excited vibration by damping thus looks promising and
merits further study with reference to specific applica-
tion,

LIMITATIONS AND FURTHER DEVELOPMENTS OF THE THEORY

Polar Symmetry

An important idea in the rotor vibration theory is
the concept of polar symmetry. This concept implies the
abscnce of a preferred direction in the plane of the ro-
tor, A rotor of three or more equal blades has polar
synmetry. A rotor of two blades or one with unequal cen-
tering springs does not have polar symmetry. A pylon
for whiech K4 = Ky, By = By, and @y = oy has polar
symmetry. The possibility of solving the rotor vidbration
prodlem in terms of eoxponential or trigonometric func-
tions depends upon the existence of polar symmetry in the
rotating parts or in the nonrotating narts or in both.
The general case of no polar symmetry would lead to
Mathieu functions or something similar.

Two Blades

A brief comperison between the two~blade and the gen-
eral casc is presented herein. Polar symmetry of the py-
lon is assumed. The shaft-critical speed is obtained by
substituting w, = 0 1in the characteristic equation as
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expressed in a rotating coordinate system. TFor onc or two
blades, the equation obtained is

2 X & K P K ~
r(—w“ + =) (wa a2, -8 > - powt <Tw“ + §> = 0 (38)
L % b 2

The first bracketed factor gives the beginning of a self-
excited range and the second factor gives the end of the
range.

Equation (38) can be compared with the equation for
the shaft-critical speed of three or more equal blades
and for polar symmetry

K a K i
(—wa + ﬁ) (wg = + §3> o w* =0 (39)
hr}
o}

A useful chart based on equation (39) is given in figure
11; some experimental results of tests of a simple medel in
figure 12, These teosts demonstrate the essential differ-
ence between the two-blade and the general case.

Langley Memorial Aeronautical Laboratory,
N¥ational Advisory Committee for Aeronautics,
Langley Field, Va.,
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Figure 1.~ Simplifiod mechanical system representing rotor.




- 308

L

NACA

Figs. 2,3
/
wf
// ////
3t
/ (
__. /h—. - ..:“.2:‘::~'~—-.';.~
/’
cé'E } . {
2 2 3w

L]

i e i T e I ——

e
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